Officially today all y'all can have all the awesome power that I've had in Proteome Discoverer 2.1
What powers are those?
How 'bout the power to Export your data to Excel format?
What about the ability to filter at any level and apply it to other levels (say, I only want to see peptides with cysteines? I filter at the peptide level and then toggle the tab that says "apply to proteins". BOOM!! You have only proteins with peptides with cysteines!
What about the ability to generate your own TMT ratios like you could in PD 1.4. Just want to see the ratio between 126N and 129C, manually generate that ratio!
Have a super computer like the 32 core Proteome Destroyer I hear is coming out, or have PD installed on a server with hundreds of cores? You can go right into the Administration tab and tell PD how many workflows PD can handle at once. Why run only 2 workflows when your monster PC can handle 8 or 10 or 100 files at once?
The biggest improvements? Advanced TMT quan. Instantly apply corrections to your reporter ion data according to the Signal-to-noise ratio of the individual peptide measurements. For example, if you have one peptide that had a signal to noise (S/N) of 2000, meaning 99.99% of the signal you're seeing there is from that peptide and not background, this value will have a higher weight in the total protein quan than a peptide that only had 1e3 counts and a S/N of 3. Better data is weighted to a higher level than lower quality data!
If your Maintenance is current you can download the upgrade from the Thermo Omics Portal and upgrade right now! Don't have current maintenance? Call your sales rep now!
13 Kasım 2015 Cuma
12 Kasım 2015 Perşembe
Everything you ever wanted to know about the Proteomics Standards Initiative
This is an interesting and thorough breakdown of the Proteomics Standards Initiative, one of many groups that is trying to demystify this awesome field of ours to outsiders (Open Access).
Tonight's plan! Learn Compound Discoverer!
Okay, that's a pretty cool icon, right?
What do Proteome Discoverer and Compound Discoverer have in common (besides the obvious overuse of the letter "r") a ton of stuff!
Compound Discoverer looks just like the Proteome Discoverer interface. The goal is to make it easier to move from one data processing workflow to another without having to learn a whole new set of interfaces!
See? It looks just like it. You set up studies the same way, you import data files the same way, and then you just have to figure out what all those funny nodes do!
I'm about to put metabolite ID and metabolism via mass spec on my resume. Even better, when they get around to launching Compound Discoverer 2.0, then this interface can easily do straight up metabolomics.
By the way. If you have used this program (or bought it and would like to learn how to use it) this is the place to find info: WWW.myCompoundDiscoverer.com
Honestly, I wrote this whole post so that the next time I Google: MyCompoundDiscoverer, it'll take me here and then I can direct link to the page. There are instructional videos and overviews!
10 Kasım 2015 Salı
PRIDE Inspector -- Meta-analyze all the things!
Apparently, I've downloaded several versions of the PRIDE inspector, because I have many .ZIP files in my Downloads folder. For some reason, though, I don't guess I've ever Unblocked the Zip file, unzipped it, and then ran it...or I forgot that I did...
A brand new paper in MCP reminded me of it, and I'm assuming that this means that the newest version I just downloaded is the best one anyway (available here!)
Part of the title of the new paper, btw, is:...moving toward a universal visualization tool for proteomics data standard formats...cool, right?
Some people save their data for archiving in some format or the other like: mzml, mxml, mzxml and xzmlzxmllxmzmlllllllzzMxxmz (just to name a few). These have all been very valiant attempts (except that last one. that guy was just being a jerk) to keep our data in a format that would standardize things, so we have all the important data in one place and we can compare instrument -to - instrument.
Problem is, there have been several of these. And it can be daunting. Say, I'm dosing these cells with a super cool drug and I want to do proteomics on it and I see that another lab previously dosed mice with that drug it might not be easy at all to compare that data.
See where I'm heading?
The PRIDE Inspector reads basically all of these data formats (except that last one. the inventor has been shunned by the field this morning). You get a nice graphical output of the spectra and if the data is processed you can check the results at every level. Perhaps even as nice, if the study is saved in the PRIDE database you can link directly to the dataset. Just want to rapidly meta-analyze everything in the PRIDE repository? This might be your window!
Now, notice the fact that the title includes "moving toward a universal". I'm sure that means there is more to be done here. But it looks like a
9 Kasım 2015 Pazartesi
Article in The Scientist: Cracking the Complex
The Scientist has a really good article this edition on top down proteomics for protein complexes. If you don't get the free magazine delivered to your house, you can read the article here.
Highlights? Overviews of a bunch of different researchers current work...oh...and the suggestion that Northwestern has hacked a QE HF to have extended mass range along the way of the Exactive EMR!?!?! and it has the capability to do pseudo-MS3s!!!!!
Want to do proteomics with epidemiologists? This paper aims to create common language!
Image Source: 4designersart/Fotolia.com (lifted from this article)
Epidemiology has been one of those big things for a while. In my mind it seems like it kinda blew up the same time all this -omics stuff did. Schools have been putting lots of money into both the last few years. On the outside, it seems like they're opposite things. They are looking at trends in human beings to find disease patterns, while we're looking extremely deep into the disease, or people with the disease. However, now that we can get deep proteomic coverage in single runs, does this open us up to working together?
More and more, it looks like the answer is a resounding yes! For an overview of the topic you should check out this review: Epidemiologic Design and Analysis for Proteomic Studies: A Primer on -OmicTechnologies. It is open access and tries to bridge the gap.
I think it is very nicely written. While it is geared more toward the epidemiologists, in telling them what we do, it highlights some studies where the two were combined well. If I wanted to do a big study of some disease popping around in a human population, I wouldn't know how to sample people in a statistically valid sense. "Hey group A, you have the disease, right? You're TMT channels 126-129!"
Their job is to assess the factors that are important and design the experiment in a significant way. And then pull the right data out of the final protein list to show what is important. Turns out half the people here also suffer from a second disease? That's a nice data point to have so we don't draw a spurious conclusion, right? And there is something useful to be gained from that knowledge post-data processing? Even better!
This way we can focus on getting good quantitative protein IDs. And...if someone wants to explain what we do in terminology geared toward my collaborators' specific fields? Well! then I can send them this open source PDF to clear up some misconceptions before we sit down at the table and start designing this killer study!
8 Kasım 2015 Pazar
Global glycopeptide quantification!
I just stole this right off a Twitter feed. Left the Tweet intact, even! (Thanks, Julian!)
Okay, this paper is obviously awesome. It goes after some biological question and it comes up with some great insight. Unfortunately, it contains a lot of words I don't know and on this lovely Saturday afternoon I don't have the motivation to do the research necessary for me to fully appreciate what they are going after.
Why should you check out this paper? Cause its pure spectralporn! I can say that, right? They say "foodporn" on network TV all the time! I mean, its like foodporn for LC-MS/MS spectra!
Seriously, though, check this figure out (click to expand)! This is some nice looking data! Benjamin Parker et al., out of the University of Sydney know what the heck they are doing.
Kaydol:
Kayıtlar (Atom)
Popular Posts
-
A recent paper in PNAS makes the statement in the title "Protein Carbamylation is a Hallmark of Aging. You can find it here . They find...